Title: | Regression Analysis for Seed Germination as a Function of Temperature |
---|---|
Description: | Regression analysis using common models in seed temperature studies, such as the Gaussian model (Martins, JF, Barroso, AAM, & Alves, PLCA (2017) <doi:10.1590/s0100-83582017350100039>), quadratic (Nunes, AL, Sossmeier, S, Gotz, AP, & Bispo, NB (2018) <doi: 10.17265/2161-6264/2018.06.002>) and others with potential for use, such as those implemented in the 'drc' package (Ritz, C, Baty, F, Streibig, JC, & Gerhard, D (2015). <doi:10.1371/journal.pone.0146021>), in the estimation of the ideal and cardinal temperature for the occurrence of plant seed germination. The functions return graphs with the equations automatically. |
Authors: | Gabriel Danilo Shimizu [aut, cre]
|
Maintainer: | Gabriel Danilo Shimizu <[email protected]> |
License: | GPL (>= 2) |
Version: | 1.0.3 |
Built: | 2025-02-28 05:19:03 UTC |
Source: | https://github.com/cran/seedreg |
Calculates the area under the germination or emergence curve. A parameter that can replace the traditional emergence or germination speed index.
aac(dados, trat, nrep, time)
aac(dados, trat, nrep, time)
dados |
data.frame containing the responses of the evaluations in separate columns side by side and without the columns with the identification of the factors |
trat |
vector of treatments with n repetitions |
nrep |
Number of repetitions |
time |
vector containing time |
Returns a vector with the index
data("substrate") aac(substrate[,c(3:18)], trat = substrate$Trat, nrep = 4, time = 1:16)
data("substrate") aac(substrate[,c(3:18)], trat = substrate$Trat, nrep = 4, time = 1:16)
The data come from an experiment conducted at the Seed Analysis Laboratory of the Agricultural Sciences Center of the State University of Londrina, in which five temperatures (15, 20, 25, 30 and 35C) were evaluated in the germination of Aristolochia elegans. The experiment was conducted in a completely randomized design with four replications of 25 seeds each.
data("aristolochia")
data("aristolochia")
data.frame containing data set
trat
numeric vector with factor 1
germ
Numeric vector with germination percentage
vel
numerical vector with germination speed
Hugo Roldi Guariz
data(aristolochia)
data(aristolochia)
The 'BC.4' and 'BC.5' logistical models provide Brain-Cousens' modified logistical models to describe u-shaped hormesis. This model was extracted from the 'drc' package and adapted for temperature analysis in seed germination
BC_model( trat, resp, npar = "BC.4", error = "SE", ylab = "Germination (%)", xlab = expression("Temperature ("^"o" * "C)"), theme = theme_classic(), legend.position = "top", cardinal = 0, r2 = "all", width.bar = NA, scale = "none", textsize = 12, pointsize = 4.5, linesize = 0.8, pointshape = 21, font.family = "sans" )
BC_model( trat, resp, npar = "BC.4", error = "SE", ylab = "Germination (%)", xlab = expression("Temperature ("^"o" * "C)"), theme = theme_classic(), legend.position = "top", cardinal = 0, r2 = "all", width.bar = NA, scale = "none", textsize = 12, pointsize = 4.5, linesize = 0.8, pointshape = 21, font.family = "sans" )
trat |
Numerical or complex vector with treatments |
resp |
Numerical vector containing the response of the experiment. |
npar |
Number of model parameters (default is BC.4) |
error |
Error bar (It can be SE - default, SD or FALSE) |
ylab |
Variable response name (Accepts the expression() function) |
xlab |
Treatments name (Accepts the expression() function) |
theme |
ggplot2 theme (default is theme_bw()) |
legend.position |
Legend position (default is c(0.3,0.8)) |
cardinal |
Defines the value of y considered extreme (default considers 0 germination) |
r2 |
Coefficient of determination of the mean or all values (default is all) |
width.bar |
bar width |
scale |
Sets x scale (default is none, can be "log") |
textsize |
Font size |
pointsize |
shape size |
linesize |
line size |
pointshape |
format point (default is 21) |
font.family |
Font family (default is sans) |
The model function for the Brain-Cousens model (Brain and Cousens, 1989) is
and it is a five-parameter model, obtained by extending the four-parameter log-logistic model (LL.4 to take into account inverse u-shaped hormesis effects. Fixing the lower limit at 0 yields the four-parameter model
used by van Ewijk and Hoekstra (1993).
Coefficients
Coefficients and their p values
Optimum temperature
Optimum temperature (equivalent to the maximum point)
Optimum temperature response
Response at the optimal temperature (equivalent to the maximum point)
Minimal temperature
Temperature that has the lowest response
Minimal temperature response
Lowest predicted response
Predicted maximum basal value
Lower basal limit temperature based on the value set by the user (default is 0)
Predicted minimum basal value
Upper basal limit temperature based on the value set by the user (default is 0)
AIC
Akaike information criterion
BIC
Bayesian Inference Criterion
r-squared
Determination coefficient
RMSE
Root mean square error
grafico
Graph in ggplot2 with equation
if the maximum predicted value is equal to the maximum x, the curve does not have a maximum point within the studied range. If the minimum value is less than the lowest point studied, disregard the value.
Model imported from the drc package (Ritz et al., 2016)
Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves
Seber, G. A. F. and Wild, C. J (1989) Nonlinear Regression, New York: Wiley and Sons (p. 330).
Ritz, C.; STREBIG, J.C. and RITZ, M.C. Package ‘drc’. Creative Commons: Mountain View, CA, USA, 2016.
library(seedreg) data("aristolochia") attach(aristolochia) #================================ # Germination #================================ BC_model(trat,germ) #================================ # Germination speed #================================ BC_model(trat, vel, ylab=expression("v"~(dias^-1)))
library(seedreg) data("aristolochia") attach(aristolochia) #================================ # Germination #================================ BC_model(trat,germ) #================================ # Germination speed #================================ BC_model(trat, vel, ylab=expression("v"~(dias^-1)))
The 'CRS.4' and 'CRS.5' logistical models provide Brain-Cousens modified logistical models to describe u-shaped hormesis. This model was extracted from the 'drc' package and adapted for temperature analysis in seed germination
CD_model( trat, resp, npar = "CRS.4", error = "SE", ylab = "Germination (%)", xlab = expression("Temperature ("^"o" * "C)"), theme = theme_classic(), legend.position = "top", cardinal = 0, r2 = "all", width.bar = NA, scale = "none", textsize = 12, pointsize = 4.5, linesize = 0.8, pointshape = 21, font.family = "sans" )
CD_model( trat, resp, npar = "CRS.4", error = "SE", ylab = "Germination (%)", xlab = expression("Temperature ("^"o" * "C)"), theme = theme_classic(), legend.position = "top", cardinal = 0, r2 = "all", width.bar = NA, scale = "none", textsize = 12, pointsize = 4.5, linesize = 0.8, pointshape = 21, font.family = "sans" )
trat |
Numerical or complex vector with treatments |
resp |
Numerical vector containing the response of the experiment. |
npar |
Number of model parameters |
error |
Error bar (It can be SE - default, SD or FALSE) |
ylab |
Variable response name (Accepts the expression() function) |
xlab |
treatments name (Accepts the expression() function) |
theme |
ggplot2 theme (default is theme_classic()) |
legend.position |
legend position (default is c(0.3,0.8)) |
cardinal |
defines the value of y considered extreme (default considers 0 germination) |
r2 |
coefficient of determination of the mean or all values (default is all) |
width.bar |
bar width |
scale |
Sets x scale (default is none, can be "log") |
textsize |
Font size |
pointsize |
shape size |
linesize |
line size |
pointshape |
format point (default is 21) |
font.family |
Font family (default is sans) |
The four-parameter model is given by the expression:
while the five-parameter is:
Coefficients
Coefficients and their p values
Optimum temperature
Optimum temperature (equivalent to the maximum point)
Optimum temperature response
Response at the optimal temperature (equivalent to the maximum point)
Minimal temperature
Temperature that has the lowest response
Minimal temperature response
Lowest predicted response
Predicted maximum basal value
Lower basal limit temperature based on the value set by the user (default is 0)
Predicted minimum basal value
Upper basal limit temperature based on the value set by the user (default is 0)
AIC
Akaike information criterion
BIC
Bayesian Inference Criterion
r-squared
Determination coefficient
RMSE
Root mean square error
grafico
Graph in ggplot2 with equation
If the maximum predicted value is equal to the maximum x, the curve does not have a maximum point within the studied range. If the minimum value is less than the lowest point studied, disregard the value.
Model imported from the drc package (Ritz et al., 2016)
Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves
Seber, G. A. F. and Wild, C. J (1989) Nonlinear Regression, New York: Wiley and Sons (p. 330).
Ritz, C.; Strebig, J.C.; Ritz, M.C. Package 'drc'. Creative Commons: Mountain View, CA, USA, 2016.
library(seedreg) data("aristolochia") attach(aristolochia) #================================ # Germination #================================ CD_model(trat,germ) #================================ # Germination speed #================================ CD_model(trat, vel, ylab=expression("v"~(dias^-1)))
library(seedreg) data("aristolochia") attach(aristolochia) #================================ # Germination #================================ CD_model(trat,germ) #================================ # Germination speed #================================ CD_model(trat, vel, ylab=expression("v"~(dias^-1)))
Correlation between the logistical model and the traditional model
correl(seeds)
correl(seeds)
seeds |
Object returned in the seeds function |
Returns correlation graphs between parameters calculated by traditional methods and by logistic regression
data("substrate") a=seeds(substrate[,c(3:18)], trat = substrate$Trat, nrep = 4, time = 1:16) correl(a)
data("substrate") a=seeds(substrate[,c(3:18)], trat = substrate$Trat, nrep = 4, time = 1:16) correl(a)
Performs the construction of a logistic regression graph by treatment over time
curve( dados, trat, nrep, time, n, model = LL.3(), ylab = "Emergence (%)", xlab = "Time (days)", legend.position = c(0.2, 0.8) )
curve( dados, trat, nrep, time, n, model = LL.3(), ylab = "Emergence (%)", xlab = "Time (days)", legend.position = c(0.2, 0.8) )
dados |
data.frame containing the responses of the evaluations in separate columns side by side and without the columns with the identification of the factors |
trat |
vector of treatments with n repetitions |
nrep |
Number of repetitions |
time |
vector containing time |
n |
total seeds per repetition |
model |
logistic model according to drc package |
ylab |
y-axis name |
xlab |
x-axis name |
legend.position |
Legend position |
Returns a logistic regression graph by treatment over time.
data("substrate") curve(substrate[,c(3:18)], trat = substrate$Trat, nrep = 4, n=10, time = 1:16)
data("substrate") curve(substrate[,c(3:18)], trat = substrate$Trat, nrep = 4, n=10, time = 1:16)
Calculates the emergence or germination speed index according to Maguire (1962)
iv(data, trat, nrep, time)
iv(data, trat, nrep, time)
data |
Data.frame containing the responses of the evaluations in separate columns side by side and without the columns with the identification of the factors |
trat |
Vector of treatments with n repetitions |
nrep |
Number of repetitions |
time |
Vector containing time |
Returns the vector with the index
Maguire JD (1962). Seed of germination - aid in selection and evaluation for seedling emergence and vigour. J Crop Sci 2:176-177.
data("substrate") iv(substrate[,c(3:18)], trat = substrate$Trat, nrep = 4, time = 1:16)
data("substrate") iv(substrate[,c(3:18)], trat = substrate$Trat, nrep = 4, time = 1:16)
Returns a graph with the frequencies of germinated or emerged seeds
lineplot( dados, trat, nrep, time, ylab = "Emergence", xlab = "Time (days)", nt = NA, percentage = FALSE, legend.position = c(0.2, 0.8) )
lineplot( dados, trat, nrep, time, ylab = "Emergence", xlab = "Time (days)", nt = NA, percentage = FALSE, legend.position = c(0.2, 0.8) )
dados |
data.frame containing the responses of the evaluations in separate columns side by side and without the columns with the identification of the factors |
trat |
vector of treatments with n repetitions |
nrep |
Number of repetitions |
time |
vector containing time |
ylab |
y-axis name |
xlab |
x-axis name |
nt |
total seeds per repetition |
percentage |
y scale in percentage |
legend.position |
Legend position |
Returns a graph with the frequencies of germinated or emerged seeds.
data("substrate") lineplot(substrate[,c(3:18)], trat = substrate$Trat, nrep = 4, time = 1:16)
data("substrate") lineplot(substrate[,c(3:18)], trat = substrate$Trat, nrep = 4, time = 1:16)
Logistic models with three (LL.3) or four (LL.4) continuous data parameters. This model was extracted from the drc package and adapted for temperature analysis in seed germination.
LL_model( trat, resp, npar = "LL.3", error = "SE", ylab = "Germination (%)", xlab = expression("Temperature ("^"o" * "C)"), theme = theme_classic(), legend.position = "top", cardinal = 0, r2 = "all", width.bar = NA, scale = "none", textsize = 12, pointsize = 4.5, linesize = 0.8, pointshape = 21, font.family = "sans" )
LL_model( trat, resp, npar = "LL.3", error = "SE", ylab = "Germination (%)", xlab = expression("Temperature ("^"o" * "C)"), theme = theme_classic(), legend.position = "top", cardinal = 0, r2 = "all", width.bar = NA, scale = "none", textsize = 12, pointsize = 4.5, linesize = 0.8, pointshape = 21, font.family = "sans" )
trat |
Numerical or complex vector with treatments |
resp |
Numerical vector containing the response of the experiment. |
npar |
Number of model parameters |
error |
Error bar (It can be SE - default, SD or FALSE) |
ylab |
Variable response name (Accepts the expression() function) |
xlab |
Treatments name (Accepts the expression() function) |
theme |
ggplot2 theme (default is theme_bw()) |
legend.position |
Legend position (default is c(0.3,0.8)) |
cardinal |
Defines the value of y considered extreme (default considers 0 germination) |
r2 |
Coefficient of determination of the mean or all values (default is all) |
width.bar |
Bar width |
scale |
Sets x scale (default is none, can be "log") |
textsize |
Font size |
pointsize |
shape size |
linesize |
line size |
pointshape |
format point (default is 21) |
font.family |
Font family (default is sans) |
The three-parameter log-logistic function with lower limit 0 is
The four-parameter log-logistic function is given by the expression
The function is symmetric about the inflection point (e).
Coefficients
Coefficients and their p values
Optimum temperature
Optimum temperature (equivalent to the maximum point)
Optimum temperature response
Response at the optimal temperature (equivalent to the maximum point)
Minimal temperature
Temperature that has the lowest response
Minimal temperature response
Lowest predicted response
Predicted maximum basal value
Lower basal limit temperature based on the value set by the user (default is 0)
Predicted minimum basal value
Upper basal limit temperature based on the value set by the user (default is 0)
AIC
Akaike information criterion
BIC
Bayesian Inference Criterion
r-squared
Determination coefficient
RMSE
Root mean square error
grafico
Graph in ggplot2 with equation
if the maximum predicted value is equal to the maximum x, the curve does not have a maximum point within the studied range. If the minimum value is less than the lowest point studied, disregard the value.
Model imported from the drc package (Ritz et al., 2016)
Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves
Seber, G. A. F. and Wild, C. J (1989) Nonlinear Regression, New York: Wiley and Sons (p. 330).
Ritz, C.; Strebig, J.C.; Ritz, M.C. Package ‘drc’. Creative Commons: Mountain View, CA, USA, 2016.
library(seedreg) data("aristolochia") attach(aristolochia) #================================ # Germination #================================ LL_model(trat,germ) #================================ # Germination speed #================================ LL_model(trat, vel, ylab=expression("v"~(dias^-1)))
library(seedreg) data("aristolochia") attach(aristolochia) #================================ # Germination #================================ LL_model(trat,germ) #================================ # Germination speed #================================ LL_model(trat, vel, ylab=expression("v"~(dias^-1)))
Linear regression analysis of an experiment with a quantitative factor or isolated effect of a quantitative factor
LM_model( trat, resp, ylab = "Germination (%)", error = "SE", xlab = expression("Temperature ("^"o" * "C)"), grau = NA, theme = theme_classic(), cardinal = 0, legend.position = "top", width.bar = NA, scale = "none", textsize = 12, pointsize = 4.5, linesize = 0.8, pointshape = 21, font.family = "sans" )
LM_model( trat, resp, ylab = "Germination (%)", error = "SE", xlab = expression("Temperature ("^"o" * "C)"), grau = NA, theme = theme_classic(), cardinal = 0, legend.position = "top", width.bar = NA, scale = "none", textsize = 12, pointsize = 4.5, linesize = 0.8, pointshape = 21, font.family = "sans" )
trat |
Numerical vector with treatments (Declare as numeric) |
resp |
Numerical vector containing the response of the experiment. |
ylab |
Dependent variable name (Accepts the expression() function) |
error |
Error bar (It can be SE - default, SD or FALSE) |
xlab |
Independent variable name (Accepts the expression() function) |
grau |
Degree of the polynomial (1,2 or 3) |
theme |
ggplot2 theme (default is theme_classic()) |
cardinal |
Defines the value of y considered extreme (default considers 0 germination) |
legend.position |
Legend position (default is "top") |
width.bar |
Bar width |
scale |
Sets x scale (default is none, can be "log") |
textsize |
Font size |
pointsize |
shape size |
linesize |
line size |
pointshape |
format point (default is 21) |
font.family |
Font family (default is sans) |
Coefficients
Coefficients and their p values
Optimum temperature
Optimum temperature (equivalent to the maximum point)
Optimum temperature response
Response at the optimal temperature (equivalent to the maximum point)
Minimal temperature
Temperature that has the lowest response
Minimal temperature response
Lowest predicted response
Predicted maximum basal value
Lower basal limit temperature based on the value set by the user (default is 0)
Predicted minimum basal value
Upper basal limit temperature based on the value set by the user (default is 0)
AIC
Akaike information criterion
BIC
Bayesian Inference Criterion
VIF
Variance inflation factor (multicollinearity)
r-squared
Determination coefficient
RMSE
Root mean square error
grafico
Graph in ggplot2 with equation
If the maximum predicted value is equal to the maximum x, the curve does not have a maximum point within the studied range. If the minimum value is less than the lowest point studied, disregard the value.
Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves
library(seedreg) data("aristolochia") attach(aristolochia) #================================ # Germination #================================ LM_model(trat,germ, grau=3) #================================ # Germination speed #================================ LM_model(trat, vel, grau=3, ylab=expression("v"~(dias^-1)))
library(seedreg) data("aristolochia") attach(aristolochia) #================================ # Germination #================================ LM_model(trat,germ, grau=3) #================================ # Germination speed #================================ LM_model(trat, vel, grau=3, ylab=expression("v"~(dias^-1)))
Fit a polynomial surface determined by one or more numerical predictors, using local fitting.
loess_model( trat, resp, ylab = "Germination (%)", xlab = expression("Temperature ("^"o" * "C)"), theme = theme_classic(), error = "SE", cardinal = 0, width.bar = NA, legend.position = "top", scale = "none", textsize = 12, pointsize = 4.5, linesize = 0.8, pointshape = 21, font.family = "sans" )
loess_model( trat, resp, ylab = "Germination (%)", xlab = expression("Temperature ("^"o" * "C)"), theme = theme_classic(), error = "SE", cardinal = 0, width.bar = NA, legend.position = "top", scale = "none", textsize = 12, pointsize = 4.5, linesize = 0.8, pointshape = 21, font.family = "sans" )
trat |
Numerical or complex vector with treatments |
resp |
Numerical vector containing the response of the experiment. |
ylab |
Variable response name (Accepts the expression() function) |
xlab |
treatments name (Accepts the expression() function) |
theme |
ggplot2 theme (default is theme_bw()) |
error |
Error bar (It can be SE - default, SD or FALSE) |
cardinal |
defines the value of y considered extreme (default considers 0 germination) |
width.bar |
bar width |
legend.position |
legend position (default is c(0.3,0.8)) |
scale |
Sets x scale (default is none, can be "log") |
textsize |
Font size |
pointsize |
shape size |
linesize |
line size |
pointshape |
format point (default is 21) |
font.family |
Font family (default is sans) |
Optimum temperature
Optimum temperature (equivalent to the maximum point)
Optimum temperature response
Response at the optimal temperature (equivalent to the maximum point)
Minimal temperature
Temperature that has the lowest response
Minimal temperature response
Lowest predicted response
Predicted maximum basal value
Lower basal limit temperature based on the value set by the user (default is 0)
Predicted minimum basal value
Upper basal limit temperature based on the value set by the user (default is 0)
grafico
Graph in ggplot2 with equation
if the maximum predicted value is equal to the maximum x, the curve does not have a maximum point within the studied range. If the minimum value is less than the lowest point studied, disregard the value.
Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves
library(seedreg) data("aristolochia") attach(aristolochia) #================================ # Germination #================================ loess_model(trat,germ) #================================ # Germination speed #================================ loess_model(trat, vel, ylab=expression("v"~(dias^-1)))
library(seedreg) data("aristolochia") attach(aristolochia) #================================ # Germination #================================ loess_model(trat,germ) #================================ # Germination speed #================================ loess_model(trat, vel, ylab=expression("v"~(dias^-1)))
Graph: Merge multiple curves into a single graph
multicurve( plots, theme = theme_classic(), legend.title = NULL, legend.position = "top", trat = NA, method = "shape_color", fill = "gray90", ylab = "Germination (%)", xlab = expression("Temperature ("^"o" * "C)"), width.bar = NA, pointsize = 4.5, linesize = 0.8, textsize = 12, font.family = "sans" )
multicurve( plots, theme = theme_classic(), legend.title = NULL, legend.position = "top", trat = NA, method = "shape_color", fill = "gray90", ylab = "Germination (%)", xlab = expression("Temperature ("^"o" * "C)"), width.bar = NA, pointsize = 4.5, linesize = 0.8, textsize = 12, font.family = "sans" )
plots |
list with objects of type LM_model, BC_model, CD_model, LL_model or normal_model |
theme |
ggplot2 theme (default is theme_classi()) |
legend.title |
caption title |
legend.position |
legend position (default is c(0.3,0.8)) |
trat |
name of the curves |
method |
marking method |
fill |
dot fill color in case gray=F |
ylab |
Variable response name (Accepts the expression() function) |
xlab |
treatments name (Accepts the expression() function) |
width.bar |
bar width |
pointsize |
shape size |
linesize |
line size |
textsize |
Font size |
font.family |
Font family (default is sans) |
The method argument defines the type of markup desired by the user. By default, method="shape_color" is used, which differentiates by color and dot shape. For gray scale, use method="shape_gray". To use only color, use method="color", in this case, the dot shape is 16 (filled circle). You can change the stitch pattern by setting the fill color in quotes followed by a space and the stitch number (eg "gray 21"). Still starting from this last method, if the user uses the change to point format without filling, such as 15, 16, 17 or 18, the function will ignore the first argument (ex. "gray 16"), however, of either way the user must define a color.
The function returns a graph joining the outputs of the functions LM_model, LL_model, BC_model, CD_model, loess_model, normal_model, piecewise_model and N_model
Gabriel Danilo Shimizu
library(seedreg) data("aristolochia") attach(aristolochia) a=LM_model(trat,germ) b=LL_model(trat,germ,npar = "LL.3") c=BC_model(trat,germ, npar = "BC.4") d=CD_model(trat,germ, npar = "CRS.4") multicurve(list(a,b,c,d))
library(seedreg) data("aristolochia") attach(aristolochia) a=LM_model(trat,germ) b=LL_model(trat,germ,npar = "LL.3") c=BC_model(trat,germ, npar = "BC.4") d=CD_model(trat,germ, npar = "CRS.4") multicurve(list(a,b,c,d))
Graph for non-significant trend. Can be used within the multicurve command
N_model( trat, resp, ylab = "Germination (%)", error = "SE", legend = "not~signifcant", xlab = expression("Temperature ("^"o" * "C)"), theme = theme_classic(), width.bar = NA, legend.position = "top", textsize = 12, pointsize = 4.5, linesize = 0.8, pointshape = 21, font.family = "sans" )
N_model( trat, resp, ylab = "Germination (%)", error = "SE", legend = "not~signifcant", xlab = expression("Temperature ("^"o" * "C)"), theme = theme_classic(), width.bar = NA, legend.position = "top", textsize = 12, pointsize = 4.5, linesize = 0.8, pointshape = 21, font.family = "sans" )
trat |
Numerical vector with treatments (Declare as numeric) |
resp |
Numerical vector containing the response of the experiment. |
ylab |
Dependent variable name (Accepts the expression() function) |
error |
Error bar (It can be SE - default, SD or FALSE) |
legend |
Add the legend |
xlab |
Independent variable name (Accepts the expression() function) |
theme |
ggplot2 theme (default is theme_classic()) |
width.bar |
Bar width |
legend.position |
Legend position (default is "top") |
textsize |
Font size |
pointsize |
shape size |
linesize |
line size |
pointshape |
format point (default is 21) |
font.family |
Font family (default is sans) |
The function returns an exploratory graph of segments
Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves
library(seedreg) data("aristolochia") attach(aristolochia) #================================ # Germination #================================ N_model(trat,germ) #================================ # Germination speed #================================ N_model(trat, vel, ylab=expression("v"~(dias^-1)))
library(seedreg) data("aristolochia") attach(aristolochia) #================================ # Germination #================================ N_model(trat,germ) #================================ # Germination speed #================================ N_model(trat, vel, ylab=expression("v"~(dias^-1)))
Analysis: Normal model
normal_model( trat, resp, ylab = "Germination (%)", xlab = expression("Temperature ("^"o" * "C)"), theme = theme_classic(), error = "SE", legend.position = "top", cardinal = 0, r2 = "all", width.bar = NA, scale = "none", textsize = 12, pointsize = 4.5, linesize = 0.8, pointshape = 21, font.family = "sans" )
normal_model( trat, resp, ylab = "Germination (%)", xlab = expression("Temperature ("^"o" * "C)"), theme = theme_classic(), error = "SE", legend.position = "top", cardinal = 0, r2 = "all", width.bar = NA, scale = "none", textsize = 12, pointsize = 4.5, linesize = 0.8, pointshape = 21, font.family = "sans" )
trat |
Numerical or complex vector with treatments |
resp |
Numerical vector containing the response of the experiment. |
ylab |
Variable response name (Accepts the expression() function) |
xlab |
treatments name (Accepts the expression() function) |
theme |
ggplot2 theme (default is theme_classic()) |
error |
Error bar (It can be SE - default, SD or FALSE) |
legend.position |
legend position (default is c(0.3,0.8)) |
cardinal |
defines the value of y considered extreme (default considers 0 germination) |
r2 |
coefficient of determination of the mean or all values (default is all) |
width.bar |
bar width |
scale |
Sets x scale (default is none, can be "log") |
textsize |
Font size |
pointsize |
shape size |
linesize |
line size |
pointshape |
format point (default is 21) |
font.family |
Font family (default is sans) |
The model function for the normal model is:
Coefficients
Coefficients and their p values
Optimum temperature
Optimum temperature (equivalent to the maximum point)
Optimum temperature response
Response at the optimal temperature (equivalent to the maximum point)
Minimal temperature
Temperature that has the lowest response
Minimal temperature response
Lowest predicted response
Predicted maximum basal value
Lower basal limit temperature based on the value set by the user (default is 0)
Predicted minimum basal value
Upper basal limit temperature based on the value set by the user (default is 0)
AIC
Akaike information criterion
BIC
Bayesian Inference Criterion
r-squared
Determination coefficient
RMSE
Root mean square error
grafico
Graph in ggplot2 with equation
if the maximum predicted value is equal to the maximum x, the curve does not have a maximum point within the studied range. If the minimum value is less than the lowest point studied, disregard the value.
Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves
library(seedreg) data("aristolochia") attach(aristolochia) #================================ # Germination #================================ normal_model(trat,germ) #================================ # Germination speed #================================ normal_model(trat, vel, ylab=expression("v"~(dias^-1)))
library(seedreg) data("aristolochia") attach(aristolochia) #================================ # Germination #================================ normal_model(trat,germ) #================================ # Germination speed #================================ normal_model(trat, vel, ylab=expression("v"~(dias^-1)))
Fit a degree 1 spline with 1 knot point where the location of the knot point is unknown.
piecewise_model( trat, resp, middle = 1, CI = FALSE, bootstrap.samples = 1000, sig.level = 0.05, error = "SE", ylab = "Germination (%)", xlab = expression("Temperature ("^"o" * "C)"), theme = theme_classic(), cardinal = 0, width.bar = NA, legend.position = "top", textsize = 12, pointsize = 4.5, linesize = 0.8, pointshape = 21, font.family = "sans" )
piecewise_model( trat, resp, middle = 1, CI = FALSE, bootstrap.samples = 1000, sig.level = 0.05, error = "SE", ylab = "Germination (%)", xlab = expression("Temperature ("^"o" * "C)"), theme = theme_classic(), cardinal = 0, width.bar = NA, legend.position = "top", textsize = 12, pointsize = 4.5, linesize = 0.8, pointshape = 21, font.family = "sans" )
trat |
Numerical or complex vector with treatments |
resp |
Numerical vector containing the response of the experiment. |
middle |
A scalar in [0,1]. This represents the range that the change-point can occur in. 0 means the change-point must occur at the middle of the range of x-values. 1 means that the change-point can occur anywhere along the range of the x-values. |
CI |
Whether or not a bootstrap confidence interval should be calculated. Defaults to FALSE because the interval takes a non-trivial amount of time to calculate |
bootstrap.samples |
The number of bootstrap samples to take when calculating the CI. |
sig.level |
What significance level to use for the confidence intervals. |
error |
Error bar (It can be SE - default, SD or FALSE) |
ylab |
Variable response name (Accepts the expression() function) |
xlab |
treatments name (Accepts the expression() function) |
theme |
ggplot2 theme (default is theme_classic()) |
cardinal |
defines the value of y considered extreme (default considers 0 germination) |
width.bar |
bar width |
legend.position |
legend position (default is c(0.3,0.8)) |
textsize |
Font size |
pointsize |
shape size |
linesize |
line size |
pointshape |
format point (default is 21) |
font.family |
Font family (default is sans) |
Coefficients
Coefficients and their p values
Optimum temperature
Optimum temperature (equivalent to the maximum point)
Optimum temperature response
Response at the optimal temperature (equivalent to the maximum point)
Minimal temperature
Temperature that has the lowest response
Minimal temperature response
Lowest predicted response
Predicted maximum basal value
Lower basal limit temperature based on the value set by the user (default is 0)
Predicted minimum basal value
Upper basal limit temperature based on the value set by the user (default is 0)
AIC
Akaike information criterion
BIC
Bayesian Inference Criterion
r-squared
Determination coefficient
RMSE
Root mean square error
grafico
Graph in ggplot2 with equation
if the maximum predicted value is equal to the maximum x, the curve does not have a maximum point within the studied range. If the minimum value is less than the lowest point studied, disregard the value.
Model imported from the SiZer package
Gabriel Danilo Shimizu
Leandro Simoes Azeredo Goncalves
Chiu, G. S., R. Lockhart, and R. Routledge. 2006. Bent-cable regression theory and applications. Journal of the American Statistical Association 101:542-553.
Toms, J. D., and M. L. Lesperance. 2003. Piecewise regression: a tool for identifying ecological thresholds. Ecology 84:2034-2041.
library(seedreg) data("aristolochia") attach(aristolochia) #================================ # Germination #================================ piecewise_model(trat,germ) #================================ # Germination speed #================================ piecewise_model(trat, vel, ylab=expression("v"~(dias^-1)))
library(seedreg) data("aristolochia") attach(aristolochia) #================================ # Germination #================================ piecewise_model(trat,germ) #================================ # Germination speed #================================ piecewise_model(trat, vel, ylab=expression("v"~(dias^-1)))
Performs the deviance analysis for the generalized linear model using binomial or quasibinomial family. The function also returns multiple comparison test with tukey adjustment
quali_model( trat, resp, method = "glm", n = 50, family = "binomial", ylab = "Germination (%)", xlab = expression("Temperature ("^"o" * "C)"), reversed = TRUE, angle = 0, sup = NA, theme = theme_classic(), font.family = "sans", geom = "bar" )
quali_model( trat, resp, method = "glm", n = 50, family = "binomial", ylab = "Germination (%)", xlab = expression("Temperature ("^"o" * "C)"), reversed = TRUE, angle = 0, sup = NA, theme = theme_classic(), font.family = "sans", geom = "bar" )
trat |
Numerical or complex vector with treatments |
resp |
Numerical vector containing the response in percentage of the experiment. |
method |
method for analysis (analysis of variance - aov or analysis by generalized linear model - glm) |
n |
Number of seeds per repetition |
family |
a description of the error distribution and link function to be used in the model. For glm this can be a character string naming a family function, a family function or the result of a call to a family function. |
ylab |
Variable response name (Accepts the expression() function) |
xlab |
treatments name (Accepts the expression() function) |
reversed |
Letter order (default is FALSE) |
angle |
x-axis scale text rotation |
sup |
Number of units above the standard deviation or average bar on the graph |
theme |
ggplot2 theme (default is theme_bw()) |
font.family |
Font family (default is sans) |
geom |
type of graph ("bar" or "point") |
The function returns analysis by glm (binomial or quasibinomial family), post-hoc and column graph
library(seedreg) data("aristolochia") attach(aristolochia) quali_model(trat, germ, n=25, family="quasibinomial")
library(seedreg) data("aristolochia") attach(aristolochia) quali_model(trat, germ, n=25, family="quasibinomial")
Simplification of functions: acc, iv, tm and tml.
seeds(data, trat, nrep, time)
seeds(data, trat, nrep, time)
data |
Data.frame containing the responses of the evaluations in separate columns side by side and without the columns with the identification of the factors |
trat |
Vector of treatments with n repetitions |
nrep |
Number of repetitions |
time |
Vector containing time |
Returns a data.frame with the indices
data("substrate") seeds(substrate[,c(3:18)], trat = substrate$Trat, nrep = 4, time = 1:16)
data("substrate") seeds(substrate[,c(3:18)], trat = substrate$Trat, nrep = 4, time = 1:16)
The data come from an experiment carried out at the Universidade Estadual de Londrina, in which four types of substrates were tested in the emergence of sour passion fruit seeds. The experiment was carried out in a completely randomized design with four replications of 10 seeds each.
data("substrate")
data("substrate")
data.frame containing data set
Trat
Vector with factor 1
bloco
Vector with block
1,2,3...
Numerical vector with germination
data(substrate)
data(substrate)
Calculates the average germination/emergence time according to Silva and Nakagawa (1995)
tm(data, trat, nrep, time)
tm(data, trat, nrep, time)
data |
data.frame containing the responses of the evaluations in separate columns side by side and without the columns with the identification of the factors |
trat |
vector of treatments with n repetitions |
nrep |
Number of repetitions |
time |
vector containing time |
Returns the vector with the average time.
SILVA, J. B. C.; NAKAGAWA, J. Estudos de formulas para calculo de germinacao. Informativo ABRATES, Londrina, v. 5, n. 1, p. 62-73, 1995.
data("substrate") tm(substrate[,c(3:18)], trat = substrate$Trat, nrep = 4, time = 1:16)
data("substrate") tm(substrate[,c(3:18)], trat = substrate$Trat, nrep = 4, time = 1:16)
Param: Logistic average time
tml(dados, trat, nrep, time)
tml(dados, trat, nrep, time)
dados |
Data.frame containing the responses of the evaluations in separate columns side by side and without the columns with the identification of the factors |
trat |
Vector of treatments with n repetitions |
nrep |
Number of repetitions |
time |
Vector containing time |
Returns the vector with the average time.
data("substrate") tml(substrate[,c(3:18)], trat = substrate$Trat, nrep = 4, time = 1:16)
data("substrate") tml(substrate[,c(3:18)], trat = substrate$Trat, nrep = 4, time = 1:16)